# Übungsaufgabe

### Die Graphen der Funktionen

$$f_K(x) = -\frac{1}{K^2} x^3 + K$$
 und  $g_K(x) = \frac{1}{K^2} x^3 + K$  mit  $K \hat{I} R^{>0}$ 

## umranden mit der x-Achse eine Fläche A<sub>K</sub>.

- **a)** Bestimmen Sie die Schnittstellen von  $f_{16}$  und  $g_{16}$  mit der x-Achse, so wie den gemeinsamen Schnittpunkt der beiden Funktionsgraphen.
- b) Fertigen Sie eine Wertetabelle an, und zeichnen Sie die Fläche, die von den Graphen von f<sub>16</sub>, g<sub>16</sub> und der x-Achse umrandet wird, in ein Koordinatensystem ein. (Maßstab: 1 LE j 0,5 cm)
- c) In die Fläche A<sub>16</sub>, die die Graphen der beiden Funktionen mit der x-Achse bilden, ist ein Fünfeck so einzubeschreiben, dass sein Flächeninhalt F maximal ist. Das Fünfeck soll symmetrisch zur y-Achse sein. Berechnen Sie den maximalen Flächeninhalt des Fünfecks.
- **d)** Berechnen Sie für allgemeines  $K \in \mathbb{R}^{>0}$  das Volumen des Rotationskörpers, den man erhält, wenn die Fläche  $A_K$  um die x-Achse rotiert.
- e) Welches Volumen erhält man für K = 7?
- **f)** Berechnen Sie für allgemeines  $K \in \mathbb{R}^{>0}$  den Flächeninhalt der Fläche  $A_K$ .
- **g)** Für welches  $K \in \mathbb{R}^{>0}$  stimmt die Maßzahl der Fläche  $A_K$  mit der Maßzahl des Volumens des Rotationskörpers überein, der durch Rotation von  $A_K$  um die x-Achse entsteht ?
- **h)** Zeigen Sie, dass für beliebiges  $K \in \mathbb{R}^{>0}$  die Fläche  $F_{max}$  des achsensymmetrischen Fünfecks mit maximalem Flächeninhalt die Fläche  $A_K$  zu 92,3 % ausfüllt.



# $L\ \ddot{o}\ s\ u\ n\ g$

a) 
$$f_{16}(x) = -\frac{1}{256}x^3 + 16$$

$$g_{16}(x) = \frac{1}{256} x^3 + 16$$

Berechnung der Schnittstellen mit der x-Achse

$$f_{16}(x) = 0$$

$$-\frac{1}{256}x^{3} + 16 = 0 \quad \Leftrightarrow \quad \frac{1}{256}x^{3} = 16 \quad \Leftrightarrow \quad x^{3} = 4096 \quad \Leftrightarrow \quad x = 16$$

$$g_{16}(x) = 0$$

$$\frac{1}{256}x^{3} + 16 = 0 \quad \Leftrightarrow \quad \frac{1}{256}x^{3} = -16 \quad \Leftrightarrow \quad x^{3} = -4096 \quad \Leftrightarrow \quad x = -16$$

#### Berechnung des gemeinsamen Schnittpunktes

$$f_{16}(x) = g_{16}(x)$$

$$-\frac{1}{256} x^3 + 16 = \frac{1}{256} x^3 + 16 \Leftrightarrow -\frac{1}{256} x^3 = \frac{1}{256} x^3 \Leftrightarrow -x^3 = x^3 \Leftrightarrow x = 0$$

Der Graph von  $f_{16}$  schneidet die x-Achse an der Stelle  $\underline{x = 16}$ ; der Graph von  $g_{16}$  schneidet die x-Achse an der Stelle  $\underline{x = -16}$ .

Die Graphen haben den gemeinsamen Schnittpunkt S = (0 / 16)

#### b) Wertetabellen

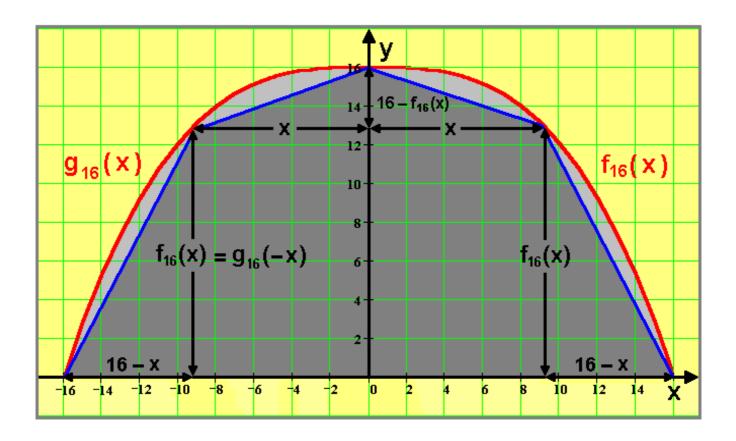
| $\frac{\mathbf{x}}{\mathbf{f}_{16}(\mathbf{x})}$ | 0      | 1      | 2      | 3      | 4     | 5      | 6      | 7     | 8  |
|--------------------------------------------------|--------|--------|--------|--------|-------|--------|--------|-------|----|
| $f_{16}(\mathbf{x})$                             | 16     | 15,996 | 15,969 | 15,895 | 15,75 | 15,512 | 15,156 | 14,66 | 14 |
|                                                  |        |        |        | I      |       | I      |        |       |    |
| X                                                | 9      | 10     | 11     | 12     | 13    | 14     | 15     | 16    |    |
| $\frac{\mathbf{x}}{\mathbf{f}_{16}(\mathbf{x})}$ | 13,152 | 12,094 | 10,801 | 9,25   | 7,418 | 5,281  | 2,816  | 0     |    |
|                                                  |        | '      |        | '      |       | '      |        | '     |    |
| X                                                | 0      | -1     | -2     | -3     | -4    | -5     | -6     | -7    | -8 |
| $\frac{\mathbf{x}}{\mathbf{g}_{16}(\mathbf{x})}$ | 16     | 15,996 | 15,969 | 15,895 | 15,75 | 15,512 | 15,156 | 14,66 | 14 |
| •                                                | 1      | !      |        | '      |       | !      |        | l     | l  |

x
 -9
 -10
 -11
 -12
 -13
 -14
 -15
 -16

 
$$g_{16}(x)$$
 13,152
 12,094
 10,801
 9,25
 7,418
 5,281
 2,816
 0



### Graphik zu Aufgabenteil b)



**c)** 
$$F(x) = 2 \{x f_{16}(x) + \frac{1}{2} (16 - x) f_{16}(x) + \frac{1}{2} x [16 - f_{16}(x)] \}$$
  
 $= 2 x f_{16}(x) + (16 - x) f_{16}(x) + x [16 - f_{16}(x)]$   
 $= 2 x f_{16}(x) + 16 f_{16}(x) - x f_{16}(x) + 16 x - x f_{16}(x)$   
 $= 16 f_{16}(x) + 16 x = 16 [f_{16}(x) + x]$ 

Durch Einsetzen des Terms von  $f_{16}\left(x\right)$  erhält man für die Fläche F des y-achsensymmetrischen Fünfecks:

$$F(x) = 16(-\frac{1}{256}x^3 + 16 + x) = -\frac{1}{16}x^3 + 16x + 256$$

Notwendige Bedingung für extremalen Flächeninhalt:  $A^{\mu}(x) = 0$ 

$$\begin{split} F^{\mu}(x) &= -\frac{3}{16} \, x^2 + 16 \\ -\frac{3}{16} \, x_E^2 + 16 &= 0 \quad \Leftrightarrow \quad \frac{3}{16} \, x_E^2 = 16 \quad \Leftrightarrow \quad 3 \, x_E^2 = 256 \quad \Leftrightarrow \quad x_E = \pm \sqrt{\frac{256}{3}} \\ \Leftrightarrow \quad x_E &= \pm 16 \, \sqrt{\frac{1}{3}} \, = \pm \frac{16}{3} \, \sqrt{3} \, = \pm 5 \frac{1}{3} \, \sqrt{3} \, \approx \pm 9{,}24 \end{split}$$



<u>Hinreichende Bedingung:</u>  $F^{\mu}(x) = 0$  s.o. und  $F^{\eta}(x) \neq 0$ 

$$F^{\P}(x) = -\frac{6}{16} x = -\frac{3}{8} x$$

$$F^{\P}(x_E) = A^{\P}(\frac{16}{3}\sqrt{3}) = -\frac{3}{8} \cdot \frac{16}{3} \cdot \sqrt{3} = -2 \cdot \sqrt{3} < 0 \implies Maximum$$

Berechnung des maximalen Flächeninhaltes

$$F_{\text{max}} = -\frac{1}{16} \left( \frac{16}{3} \sqrt{3} \right)^3 + 16 \cdot \frac{16}{3} \cdot \sqrt{3} + 256 \approx 354,53 \text{ FE}$$

Für  $x = 5\frac{1}{3}\sqrt{3} \approx 9,24$  wird der Flächeninhalt des Fünfecks maximal.

Der maximale Flächenunhalt beträgt  $354,53 \; \text{FE}$ .

Das Volumen des Rotationskörpers beträgt  $V_{Rot} = 1\frac{2}{7} \pi K^3 VE \approx 4,04 K^3 VE$ 

**e)** Für K = 7 erhält man:

$$V_{Rot,7} = \frac{9}{7} \cdot \pi \cdot 7^{3} \text{ VE } = 9 \cdot 49 \cdot \pi \text{ VE } = 441 \text{ } \pi \text{ VE } \approx 1385,44 \text{ VE}$$

Für K = 7 erhält man einen Rotationskörper mit dem Volumen

$$V_{Rot,7} = 441 \,\pi \, VE \approx 1385,44 \, VE$$



$$\mathbf{f} \quad \mathbf{A}_{K} = 2 \int_{0}^{K} \mathbf{f}_{K}(\mathbf{x}) d\mathbf{x} = 2 \int_{0}^{K} (-\frac{1}{K^{2}} \mathbf{x}^{3} + \mathbf{k}) d\mathbf{x} = 2 \left[ -\frac{1}{4 K^{2}} \mathbf{x}^{4} + K \mathbf{x} \right]_{0}^{K}$$

$$= 2 \left[ -\frac{1}{4 K^{2}} \mathbf{x}^{4} + K \mathbf{x} \right]_{0}^{K}$$

$$= 1 \frac{1}{2} K^{2}$$

Der Flächeninhalt der Fläche  $A_K$ , die von den Graphen der Funktionen  $f_K$ ,  $g_K$  und der x-Achse umrandet wird beträgt:  $A_K = 1\frac{1}{2} K^2$ 

**g)** 
$$1\frac{2}{7} \pi K^3 = 1\frac{1}{2} \pi K^2 \implies K_1 = K_2 = 0$$
  
 $\frac{9}{7} \pi K = \frac{3}{2} \iff K = \frac{3 \cdot 7}{2 \cdot 9 \cdot \pi} = \frac{7}{6 \cdot \pi} \approx 0.371$ 

Die Maßzahlen für den Inhalt der Fläche  $A_K$  und für das Volumen des Rotationskörpers  $V_{Rot}$  stimmen für  $K=\frac{7}{6\,\pi}\approx 0{,}371$  überein.

**h)** 
$$F_K(x) = 2 x f_K(x) + (k - x) f_K(x) + x [K - f_K(x)] = K[f_K(x) + x]$$
  
=  $-\frac{1}{K} x^3 + K x + K^2$ 

Notwendige Bedingung für maximalen Flächeninhalt:  $F_K^{\mu}(x) = 0$ 

$$F_{K}^{\mu}(x) = -\frac{3}{K} x^{2} + k$$

$$F_{K}^{\mu}(x_{E}) = -\frac{3}{K} x_{E}^{2} + K = 0 \iff -3 x_{E}^{2} + K^{2} = 0 \iff x_{E}^{2} = \frac{K^{2}}{3}$$

$$\iff x_{E,1,2} = \pm K \sqrt{\frac{1}{3}} \iff x_{E,1,2} = \pm \frac{K}{3} \sqrt{3}$$

$$x_{E,1} = \frac{K}{3} \sqrt{3} \qquad \land \qquad x_{E,2} = -\frac{K}{3} \sqrt{3}$$



<u>Hinreichende Bedingung:</u>  $F_K^{\mu}(x) = 0$  s.o. und  $F_K^{\eta}(x) \neq 0$ 

$$\begin{split} F_K^{\P}(x) &= -\frac{6}{K} \, x \\ F_K^{\P}(x_{E,1}) &= F_K^{\P}(\frac{K}{3} \, \sqrt[]{3}) \, = -\frac{6}{K} \cdot \frac{K}{3} \cdot \sqrt[]{3} \, = -2 \, \sqrt[]{3} \, < \, 0 \quad \Rightarrow \quad \text{Maximum} \\ F_K^{\P}(x_{E,2}) &= F_K^{\P}(-\frac{K}{3} \, \sqrt[]{3}) = -\frac{6}{K} \cdot (-\frac{K}{3} \, \sqrt[]{3}) = \, 2 \, \sqrt[]{3} \, > \, 0 \quad \Rightarrow \quad \text{Minimum} \\ F_{K,\text{max}} &= -\frac{1}{K} \, (\frac{K}{3} \, \sqrt[]{3})^3 + \frac{K^2}{3} \, \sqrt[]{3} \, = \, -\frac{1}{K} \cdot \frac{K^3}{27} \cdot 3 \, \sqrt[]{3} \, + \frac{K^2}{3} \, \sqrt[]{3} \, + K^2 \\ &= \frac{2}{9} \, K^2 \, \sqrt[]{3} \, + K^2 \qquad = \, (\frac{2}{9} \, \sqrt[]{3} \, + 1) \, K^2 \, \approx \, 1{,}385 \, k^2 \end{split}$$

Der Flächeninhalt des maximalen Fünfecks beträgt  $1{,}385\,\mathrm{K}^{\,2}$  FE

Der Flächeninhalt der Fläche  $A_K$  beträgt  $1.5~K^2~FE$  (S. Aufgabenteil f)

$$\frac{F_{K,max}}{A_K} = \frac{1,385 \text{ K}^2 \text{ FE}}{1,5 \text{ K}^2 \text{ FE}} = \frac{1,385}{1,5} \approx 0,923 = 92,3 \%$$

Das Fünfeck mit maximalem Flächeninhalt nimmt also  $\underline{\underline{92,3\,\%}}$  der Fläche ein, die von den Graphen der Funktionen  $g_K$ ,  $f_K$  und der x-Achse begrenzt ist.

